JelloMatrix Double Flip Result
The Original Matrix
1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 |
2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 |
3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 |
4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 |
5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 |
6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 |
7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 |
8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 |
9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 |
10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 |
11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 |
12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 |
13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 |
1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 |
2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 |
3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 |
4 | 11 | 5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 |
5 | 12 | 6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 |
6 | 13 | 7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 |
7 | 1 | 8 | 2 | 9 | 3 | 10 | 4 | 11 | 5 | 12 | 6 | 13 |
Scale Pattern:
Whether you look at each row individually, or look at each diagonal row (in forward or backward 'slash' directions) you will notice that the order of numbers is consistent on every row (or each direction of diagonal rows) and that only the starting number differs from row to row. I refer to this as a 'scale'. If the scale were to be played in a circle consisting of the numbers of the first 'tone' value, the shape formed would be the same regardless of which number you start with.
HORIZONTAL SCALE [<->] (-6/6): 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7,
FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,
BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6, ...
Jellomatrix by Ana Willem is licensed since 2007 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at https://www.jellobrain.com.
The Basic Orientation of the Spliced Matrix
Why splice the initial matrix? This started out as a hunch, but also following the work of Jose Arguilles who inspired this up to a point. But also the work of Mark Rothko and Randy Powell with their ABHA torus to which the matrix forms here bare some relation but which diverge from what Randy and Mark are doing in important ways. In my mind, splicing the matrix creates an architecture that reminded me of a battery. I do not think this analogy is off-base. When we combine this notion while also looking for the patterns in the 'scales' found in the original matrix, we see emergent patterns and pathways. The next progression of images takes you through a categorization of some of those patterns.
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
HIGHLIGHTING PRIMES: The Spliced Matrix
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
HIGHLIGHTING EVEN+ODD: The Spliced Matrix
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
Interstingly enough, the sections which seem to hold information about the vortec/ies they reflect seem to fall most often in the middle of the sine waves created by what appear to be very different "environments" or "gradients" between higher frequency oscillations of even and odd numbers (you might need to squint your eyes to see them), They are the waves defined by the more or less frequent oscillatory patterns taken as a whole. More about this in the "Rows" calculations in the "Increments" section below.
HORIZONTAL SCALED WAVES
Jellomatrix by Ana Willem is licensed since 2007 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at https://www.jellobrain.com.
Prime Series of Matrix is Bi-directional
WAVE FORM POLE SHIFT: Highlighting the adjacent equal values.
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,
BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6,
WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
Scale Pattern:
This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).
RED = Start of wave.
EVEN Waves
Starting 7: scale direction = forward, rhythm = 2, initial vertical = up, color = powderblue.
Starting 7: scale direction = reversed, rhythm = 6, initial vertical = up, color = orange.
Starting 7: scale direction = forward, rhythm = 2, initial vertical = up, color = plum.
Starting 7: scale direction = reversed, rhythm = 6, initial vertical = up, color = seagreen.
FORWARD BACKSLASH SCALED WAVES
Jellomatrix by Ana Willem is licensed since 2007 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at https://www.jellobrain.com.
Prime Series of Matrix is Bi-directional
FORWARD SLASH DIAGONAL SCALE [/] (6/7): 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8,
WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
Scale Pattern:
This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).
RED = Start of wave.
EVEN Waves
Starting 7: scale direction = reversed, rhythm = 2, initial vertical = up, color = powderblue.
Starting 7: scale direction = forward, rhythm = 6, initial vertical = up, color = orange.
Starting 7: scale direction = reversed, rhythm = 2, initial vertical = up, color = plum.
Starting 7: scale direction = forward, rhythm = 6, initial vertical = up, color = seagreen.
BACKWARD BACKSLASH SCALED WAVES
Jellomatrix by Ana Willem is licensed since 2007 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at https://www.jellobrain.com.
Prime Series of Matrix is Bi-directional
BACKWARD SLASH DIAGONAL SCALE [\] (8/5): 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6,
WAVE FORM SCALES: The Waveform Scales: EVEN Rhythms
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 |
9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 |
10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 |
11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 |
12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 |
13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 |
1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 |
2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 |
3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 |
4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 |
5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 |
6 | 8 | 13 | 1 | 7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 |
7 | 7 | 1 | 13 | 8 | 6 | 2 | 12 | 9 | 5 | 3 | 11 | 10 | 4 | 4 | 10 | 11 | 3 | 5 | 9 | 12 | 2 | 6 | 8 | 13 | 1 |
Scale Pattern:
This tool is meant as a proof of concept and not as a complete set of waveforms that are possible (although I am working on it!).
RED = Start of wave.
EVEN Waves
Starting 7: scale direction = reversed, rhythm = 2, initial vertical = down, color = powderblue.
Starting 7: scale direction = reversed, rhythm = 10, initial vertical = up, color = orange.
Starting 7: scale direction = reversed, rhythm = 10, initial vertical = up, color = plum.
Jellomatrix by Ana Willem is licensed since 2007 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at https://www.jellobrain.com.
ODD/EVEN: Differences and Harmonics
These increment calculations show the relationships of the numbers in the grid by relating them to the ones in front of them (forward) and behind them (backwards) using the "tone" value as the base in the numbering system.
The diagonal increments still go down the row, but show the relationships between the number and the one diagonally above (forward) it and below it (backward).
The bold letters at the end of each row represent the Lambdona Notes that the ratios the repeating increments create.
Row
Forward (Odd/Even) (x,y)|(x+1,y)
As alluded to above, if you look at the number grid below, what I have noticed is that I can usually find 'vortex activity' starting and ending with rows that oscillate between '0' and another integer. So in this section, the vortex arrays are between "zero" and "infinity". In addition, between these rows, it seems to be important to have the intervals mirror one another as you move towards the center.
Row 1: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | Row 2: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | Row 3: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | Row 4: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | Row 5: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | Row 6: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | Row 7: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | Row 8: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | Row 9: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | Row 10: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | Row 11: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | Row 12: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | Row 13: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | Row 14: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | Row 15: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | Row 16: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | Row 17: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | Row 18: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | Row 19: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | Row 20: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 |
Order of frequencies: based on a 264Hz baseline or "C"
Backward (Odd/Even) (x,y)|(x-1,y)
Row 1: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | Row 2: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | Row 3: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | Row 4: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | Row 5: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | Row 6: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | Row 7: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | Row 8: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | Row 9: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | Row 10: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | Row 11: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | Row 12: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | Row 13: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | Row 14: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | Row 15: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | Row 16: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | Row 17: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | Row 18: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | Row 19: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | Row 20: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 |
Order of frequencies: based on a 264Hz baseline or "C"
Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0/0 - - | 0/1 - - | 0/2 - - | 0/3 - - | 0/4 - - | 0/5 - - | 0/6 - - | 0/7 - - | 0/8 - - | 0/9 - - | 0/10 - - | 0/11 - - | 0/12 - - | 0/13 - - | 0/14 - - | 0/15 - - | 0/16 - - |
1 | 1/0 - - | 1/1 - - | 1/2 - - | 1/3 - - | 1/4 - - | 1/5 - - | 1/6 - - | 1/7 - - | 1/8 - - | 1/9 - - | 1/10 - - | 1/11 - - | 1/12 - - | 1/13 - - | 1/14 - - | 1/15 - - | 1/16 - - |
2 | 2/0 - - | 2/1 - - | 2/2 - - | 2/3 - - | 2/4 - - | 2/5 - - | 2/6 - - | 2/7 - - | 2/8 - - | 2/9 - - | 2/10 - - | 2/11 - - | 2/12 - - | 2/13 - - | 2/14 - - | 2/15 - - | 2/16 - - |
3 | 3/0 - - | 3/1 - - | 3/2 - - | 3/3 - - | 3/4 - - | 3/5 - - | 3/6 - - | 3/7 - - | 3/8 - - | 3/9 - - | 3/10 - - | 3/11 - - | 3/12 - - | 3/13 - - | 3/14 - - | 3/15 - - | 3/16 - - |
4 | 4/0 - - | 4/1 - - | 4/2 - - | 4/3 - - | 4/4 - - | 4/5 - - | 4/6 - - | 4/7 - - | 4/8 - - | 4/9 - - | 4/10 - - | 4/11 - - | 4/12 - - | 4/13 - - | 4/14 - - | 4/15 - - | 4/16 - - |
5 | 5/0 - - | 5/1 - - | 5/2 - - | 5/3 - - | 5/4 - - | 5/5 - - | 5/6 - - | 5/7 - - | 5/8 - - | 5/9 - - | 5/10 - - | 5/11 - - | 5/12 - - | 5/13 - - | 5/14 - - | 5/15 - - | 5/16 - - |
6 | 6/0 - - | 6/1 - - | 6/2 - - | 6/3 - - | 6/4 - - | 6/5 - - | 6/6 - - | 6/7 - - | 6/8 - - | 6/9 - - | 6/10 - - | 6/11 - - | 6/12 - - | 6/13 - - | 6/14 - - | 6/15 - - | 6/16 - - |
7 | 7/0 - - | 7/1 - - | 7/2 - - | 7/3 - - | 7/4 - - | 7/5 - - | 7/6 - - | 7/7 - - | 7/8 - - | 7/9 - - | 7/10 - - | 7/11 - - | 7/12 - - | 7/13 - - | 7/14 - - | 7/15 - - | 7/16 - - |
8 | 8/0 - - | 8/1 - - | 8/2 - - | 8/3 - - | 8/4 - - | 8/5 - - | 8/6 - - | 8/7 - - | 8/8 - - | 8/9 - - | 8/10 - - | 8/11 - - | 8/12 - - | 8/13 - - | 8/14 - - | 8/15 - - | 8/16 - - |
9 | 9/0 - - | 9/1 - - | 9/2 - - | 9/3 - - | 9/4 - - | 9/5 - - | 9/6 - - | 9/7 - - | 9/8 - - | 9/9 - - | 9/10 - - | 9/11 - - | 9/12 - - | 9/13 - - | 9/14 - - | 9/15 - - | 9/16 - - |
10 | 10/0 - - | 10/1 - - | 10/2 - - | 10/3 - - | 10/4 - - | 10/5 - - | 10/6 - - | 10/7 - - | 10/8 - - | 10/9 - - | 10/10 - - | 10/11 - - | 10/12 - - | 10/13 - - | 10/14 - - | 10/15 - - | 10/16 - - |
11 | 11/0 - - | 11/1 - - | 11/2 - - | 11/3 - - | 11/4 - - | 11/5 - - | 11/6 - - | 11/7 - - | 11/8 - - | 11/9 - - | 11/10 - - | 11/11 - - | 11/12 - - | 11/13 - - | 11/14 - - | 11/15 - - | 11/16 - - |
12 | 12/0 - - | 12/1 - - | 12/2 - - | 12/3 - - | 12/4 - - | 12/5 - - | 12/6 - - | 12/7 - - | 12/8 - - | 12/9 - - | 12/10 - - | 12/11 - - | 12/12 - - | 12/13 - - | 12/14 - - | 12/15 - - | 12/16 - - |
13 | 13/0 - - | 13/1 - - | 13/2 - - | 13/3 - - | 13/4 - - | 13/5 - - | 13/6 - - | 13/7 - - | 13/8 - - | 13/9 - - | 13/10 - - | 13/11 - - | 13/12 - - | 13/13 - - | 13/14 - - | 13/15 - - | 13/16 - - |
14 | 14/0 - - | 14/1 - - | 14/2 - - | 14/3 - - | 14/4 - - | 14/5 - - | 14/6 - - | 14/7 - - | 14/8 - - | 14/9 - - | 14/10 - - | 14/11 - - | 14/12 - - | 14/13 - - | 14/14 - - | 14/15 - - | 14/16 - - |
15 | 15/0 - - | 15/1 - - | 15/2 - - | 15/3 - - | 15/4 - - | 15/5 - - | 15/6 - - | 15/7 - - | 15/8 - - | 15/9 - - | 15/10 - - | 15/11 - - | 15/12 - - | 15/13 - - | 15/14 - - | 15/15 - - | 15/16 - - |
16 | 16/0 - - | 16/1 - - | 16/2 - - | 16/3 - - | 16/4 - - | 16/5 - - | 16/6 - - | 16/7 - - | 16/8 - - | 16/9 - - | 16/10 - - | 16/11 - - | 16/12 - - | 16/13 - - | 16/14 - - | 16/15 - - | 16/16 - - |
Right to Left Diagonals across a Row
Forward (Odd/Even) (x,y)|(x+1,y-1)
RL Row 1: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | RL Row 2: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | RL Row 3: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | RL Row 4: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | RL Row 5: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | RL Row 6: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | RL Row 7: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | RL Row 8: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | RL Row 9: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | RL Row 10: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | RL Row 11: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | RL Row 12: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | RL Row 13: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | RL Row 14: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | RL Row 15: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | RL Row 16: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | RL Row 17: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | RL Row 18: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | RL Row 19: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 |
Order of frequencies: based on a 264Hz baseline or "C"
Backward (Odd/Even) (x,y)|(x-1,y+1)
RL Row 1: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | RL Row 2: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | RL Row 3: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | RL Row 4: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | RL Row 5: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | RL Row 6: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | RL Row 7: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | RL Row 8: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | RL Row 9: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | RL Row 10: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | RL Row 11: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | RL Row 12: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | RL Row 13: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | RL Row 14: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | RL Row 15: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | RL Row 16: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | RL Row 17: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | RL Row 18: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | RL Row 19: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 |
Order of frequencies: based on a 264Hz baseline or "C"
Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0/0 - - | 0/1 - - | 0/2 - - | 0/3 - - | 0/4 - - | 0/5 - - | 0/6 - - | 0/7 - - | 0/8 - - | 0/9 - - | 0/10 - - | 0/11 - - | 0/12 - - | 0/13 - - | 0/14 - - | 0/15 - - | 0/16 - - |
1 | 1/0 - - | 1/1 - - | 1/2 - - | 1/3 - - | 1/4 - - | 1/5 - - | 1/6 - - | 1/7 - - | 1/8 - - | 1/9 - - | 1/10 - - | 1/11 - - | 1/12 - - | 1/13 - - | 1/14 - - | 1/15 - - | 1/16 - - |
2 | 2/0 - - | 2/1 - - | 2/2 - - | 2/3 - - | 2/4 - - | 2/5 - - | 2/6 - - | 2/7 - - | 2/8 - - | 2/9 - - | 2/10 - - | 2/11 - - | 2/12 - - | 2/13 - - | 2/14 - - | 2/15 - - | 2/16 - - |
3 | 3/0 - - | 3/1 - - | 3/2 - - | 3/3 - - | 3/4 - - | 3/5 - - | 3/6 - - | 3/7 - - | 3/8 - - | 3/9 - - | 3/10 - - | 3/11 - - | 3/12 - - | 3/13 - - | 3/14 - - | 3/15 - - | 3/16 - - |
4 | 4/0 - - | 4/1 - - | 4/2 - - | 4/3 - - | 4/4 - - | 4/5 - - | 4/6 - - | 4/7 - - | 4/8 - - | 4/9 - - | 4/10 - - | 4/11 - - | 4/12 - - | 4/13 - - | 4/14 - - | 4/15 - - | 4/16 - - |
5 | 5/0 - - | 5/1 - - | 5/2 - - | 5/3 - - | 5/4 - - | 5/5 - - | 5/6 - - | 5/7 - - | 5/8 - - | 5/9 - - | 5/10 - - | 5/11 - - | 5/12 - - | 5/13 - - | 5/14 - - | 5/15 - - | 5/16 - - |
6 | 6/0 - - | 6/1 - - | 6/2 - - | 6/3 - - | 6/4 - - | 6/5 - - | 6/6 - - | 6/7 - - | 6/8 - - | 6/9 - - | 6/10 - - | 6/11 - - | 6/12 - - | 6/13 - - | 6/14 - - | 6/15 - - | 6/16 - - |
7 | 7/0 - - | 7/1 - - | 7/2 - - | 7/3 - - | 7/4 - - | 7/5 - - | 7/6 - - | 7/7 - - | 7/8 - - | 7/9 - - | 7/10 - - | 7/11 - - | 7/12 - - | 7/13 - - | 7/14 - - | 7/15 - - | 7/16 - - |
8 | 8/0 - - | 8/1 - - | 8/2 - - | 8/3 - - | 8/4 - - | 8/5 - - | 8/6 - - | 8/7 - - | 8/8 - - | 8/9 - - | 8/10 - - | 8/11 - - | 8/12 - - | 8/13 - - | 8/14 - - | 8/15 - - | 8/16 - - |
9 | 9/0 - - | 9/1 - - | 9/2 - - | 9/3 - - | 9/4 - - | 9/5 - - | 9/6 - - | 9/7 - - | 9/8 - - | 9/9 - - | 9/10 - - | 9/11 - - | 9/12 - - | 9/13 - - | 9/14 - - | 9/15 - - | 9/16 - - |
10 | 10/0 - - | 10/1 - - | 10/2 - - | 10/3 - - | 10/4 - - | 10/5 - - | 10/6 - - | 10/7 - - | 10/8 - - | 10/9 - - | 10/10 - - | 10/11 - - | 10/12 - - | 10/13 - - | 10/14 - - | 10/15 - - | 10/16 - - |
11 | 11/0 - - | 11/1 - - | 11/2 - - | 11/3 - - | 11/4 - - | 11/5 - - | 11/6 - - | 11/7 - - | 11/8 - - | 11/9 - - | 11/10 - - | 11/11 - - | 11/12 - - | 11/13 - - | 11/14 - - | 11/15 - - | 11/16 - - |
12 | 12/0 - - | 12/1 - - | 12/2 - - | 12/3 - - | 12/4 - - | 12/5 - - | 12/6 - - | 12/7 - - | 12/8 - - | 12/9 - - | 12/10 - - | 12/11 - - | 12/12 - - | 12/13 - - | 12/14 - - | 12/15 - - | 12/16 - - |
13 | 13/0 - - | 13/1 - - | 13/2 - - | 13/3 - - | 13/4 - - | 13/5 - - | 13/6 - - | 13/7 - - | 13/8 - - | 13/9 - - | 13/10 - - | 13/11 - - | 13/12 - - | 13/13 - - | 13/14 - - | 13/15 - - | 13/16 - - |
14 | 14/0 - - | 14/1 - - | 14/2 - - | 14/3 - - | 14/4 - - | 14/5 - - | 14/6 - - | 14/7 - - | 14/8 - - | 14/9 - - | 14/10 - - | 14/11 - - | 14/12 - - | 14/13 - - | 14/14 - - | 14/15 - - | 14/16 - - |
15 | 15/0 - - | 15/1 - - | 15/2 - - | 15/3 - - | 15/4 - - | 15/5 - - | 15/6 - - | 15/7 - - | 15/8 - - | 15/9 - - | 15/10 - - | 15/11 - - | 15/12 - - | 15/13 - - | 15/14 - - | 15/15 - - | 15/16 - - |
16 | 16/0 - - | 16/1 - - | 16/2 - - | 16/3 - - | 16/4 - - | 16/5 - - | 16/6 - - | 16/7 - - | 16/8 - - | 16/9 - - | 16/10 - - | 16/11 - - | 16/12 - - | 16/13 - - | 16/14 - - | 16/15 - - | 16/16 - - |
Left to Right Diagonals across a Row
Forward (Odd/Even) (x,y)|(x+1,y+1)
LR Row 1: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | LR Row 2: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | LR Row 3: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | LR Row 4: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | LR Row 5: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | LR Row 6: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | LR Row 7: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | LR Row 8: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | LR Row 9: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | LR Row 10: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | LR Row 11: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | LR Row 12: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | LR Row 13: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | LR Row 14: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | LR Row 15: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | LR Row 16: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | LR Row 17: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | LR Row 18: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | LR Row 19: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 |
Order of frequencies: based on a 264Hz baseline or "C"
Backward (Odd/Even) (x,y)|(x-1,y-1)
LR Row 1: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | LR Row 2: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | LR Row 3: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | LR Row 4: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | LR Row 5: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | LR Row 6: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | LR Row 7: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | LR Row 8: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | LR Row 9: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | LR Row 10: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | LR Row 11: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | LR Row 12: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | LR Row 13: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | LR Row 14: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | LR Row 15: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | LR Row 16: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | LR Row 17: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | LR Row 18: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | LR Row 19: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 |
Order of frequencies: based on a 264Hz baseline or "C"
Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0/0 - - | 0/1 - - | 0/2 - - | 0/3 - - | 0/4 - - | 0/5 - - | 0/6 - - | 0/7 - - | 0/8 - - | 0/9 - - | 0/10 - - | 0/11 - - | 0/12 - - | 0/13 - - | 0/14 - - | 0/15 - - | 0/16 - - |
1 | 1/0 - - | 1/1 - - | 1/2 - - | 1/3 - - | 1/4 - - | 1/5 - - | 1/6 - - | 1/7 - - | 1/8 - - | 1/9 - - | 1/10 - - | 1/11 - - | 1/12 - - | 1/13 - - | 1/14 - - | 1/15 - - | 1/16 - - |
2 | 2/0 - - | 2/1 - - | 2/2 - - | 2/3 - - | 2/4 - - | 2/5 - - | 2/6 - - | 2/7 - - | 2/8 - - | 2/9 - - | 2/10 - - | 2/11 - - | 2/12 - - | 2/13 - - | 2/14 - - | 2/15 - - | 2/16 - - |
3 | 3/0 - - | 3/1 - - | 3/2 - - | 3/3 - - | 3/4 - - | 3/5 - - | 3/6 - - | 3/7 - - | 3/8 - - | 3/9 - - | 3/10 - - | 3/11 - - | 3/12 - - | 3/13 - - | 3/14 - - | 3/15 - - | 3/16 - - |
4 | 4/0 - - | 4/1 - - | 4/2 - - | 4/3 - - | 4/4 - - | 4/5 - - | 4/6 - - | 4/7 - - | 4/8 - - | 4/9 - - | 4/10 - - | 4/11 - - | 4/12 - - | 4/13 - - | 4/14 - - | 4/15 - - | 4/16 - - |
5 | 5/0 - - | 5/1 - - | 5/2 - - | 5/3 - - | 5/4 - - | 5/5 - - | 5/6 - - | 5/7 - - | 5/8 - - | 5/9 - - | 5/10 - - | 5/11 - - | 5/12 - - | 5/13 - - | 5/14 - - | 5/15 - - | 5/16 - - |
6 | 6/0 - - | 6/1 - - | 6/2 - - | 6/3 - - | 6/4 - - | 6/5 - - | 6/6 - - | 6/7 - - | 6/8 - - | 6/9 - - | 6/10 - - | 6/11 - - | 6/12 - - | 6/13 - - | 6/14 - - | 6/15 - - | 6/16 - - |
7 | 7/0 - - | 7/1 - - | 7/2 - - | 7/3 - - | 7/4 - - | 7/5 - - | 7/6 - - | 7/7 - - | 7/8 - - | 7/9 - - | 7/10 - - | 7/11 - - | 7/12 - - | 7/13 - - | 7/14 - - | 7/15 - - | 7/16 - - |
8 | 8/0 - - | 8/1 - - | 8/2 - - | 8/3 - - | 8/4 - - | 8/5 - - | 8/6 - - | 8/7 - - | 8/8 - - | 8/9 - - | 8/10 - - | 8/11 - - | 8/12 - - | 8/13 - - | 8/14 - - | 8/15 - - | 8/16 - - |
9 | 9/0 - - | 9/1 - - | 9/2 - - | 9/3 - - | 9/4 - - | 9/5 - - | 9/6 - - | 9/7 - - | 9/8 - - | 9/9 - - | 9/10 - - | 9/11 - - | 9/12 - - | 9/13 - - | 9/14 - - | 9/15 - - | 9/16 - - |
10 | 10/0 - - | 10/1 - - | 10/2 - - | 10/3 - - | 10/4 - - | 10/5 - - | 10/6 - - | 10/7 - - | 10/8 - - | 10/9 - - | 10/10 - - | 10/11 - - | 10/12 - - | 10/13 - - | 10/14 - - | 10/15 - - | 10/16 - - |
11 | 11/0 - - | 11/1 - - | 11/2 - - | 11/3 - - | 11/4 - - | 11/5 - - | 11/6 - - | 11/7 - - | 11/8 - - | 11/9 - - | 11/10 - - | 11/11 - - | 11/12 - - | 11/13 - - | 11/14 - - | 11/15 - - | 11/16 - - |
12 | 12/0 - - | 12/1 - - | 12/2 - - | 12/3 - - | 12/4 - - | 12/5 - - | 12/6 - - | 12/7 - - | 12/8 - - | 12/9 - - | 12/10 - - | 12/11 - - | 12/12 - - | 12/13 - - | 12/14 - - | 12/15 - - | 12/16 - - |
13 | 13/0 - - | 13/1 - - | 13/2 - - | 13/3 - - | 13/4 - - | 13/5 - - | 13/6 - - | 13/7 - - | 13/8 - - | 13/9 - - | 13/10 - - | 13/11 - - | 13/12 - - | 13/13 - - | 13/14 - - | 13/15 - - | 13/16 - - |
14 | 14/0 - - | 14/1 - - | 14/2 - - | 14/3 - - | 14/4 - - | 14/5 - - | 14/6 - - | 14/7 - - | 14/8 - - | 14/9 - - | 14/10 - - | 14/11 - - | 14/12 - - | 14/13 - - | 14/14 - - | 14/15 - - | 14/16 - - |
15 | 15/0 - - | 15/1 - - | 15/2 - - | 15/3 - - | 15/4 - - | 15/5 - - | 15/6 - - | 15/7 - - | 15/8 - - | 15/9 - - | 15/10 - - | 15/11 - - | 15/12 - - | 15/13 - - | 15/14 - - | 15/15 - - | 15/16 - - |
16 | 16/0 - - | 16/1 - - | 16/2 - - | 16/3 - - | 16/4 - - | 16/5 - - | 16/6 - - | 16/7 - - | 16/8 - - | 16/9 - - | 16/10 - - | 16/11 - - | 16/12 - - | 16/13 - - | 16/14 - - | 16/15 - - | 16/16 - - |
PRIMES: Differences and Harmonics
The bold letters at the end of each row represent the Lambdona Notes that the ratios of repeating increment_prime_original create.
Row
Forward (Primes) (x,y)|(x+1,y)
Row 1: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | Row 2: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | Row 3: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | Row 4: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | Row 5: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | Row 6: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | Row 7: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | Row 8: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | Row 9: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | Row 10: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | Row 11: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | Row 12: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | Row 13: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | Row 14: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | Row 15: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | Row 16: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | Row 17: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | Row 18: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | Row 19: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 |
Order of frequencies: based on a 20Hz baseline or "C"
Backward (Primes) (x,y)|(x-1,y)
Row 1: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | Row 2: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | Row 3: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | Row 4: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | Row 5: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | Row 6: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | Row 7: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | Row 8: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | Row 9: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | Row 10: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | Row 11: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | Row 12: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | Row 13: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | Row 14: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | Row 15: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | Row 16: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | Row 17: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | Row 18: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | Row 19: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 |
Order of frequencies: based on a 20Hz baseline or "C"
Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0/0 - - | 0/1 - - | 0/2 - - | 0/3 - - | 0/4 - - | 0/5 - - | 0/6 - - | 0/7 - - | 0/8 - - | 0/9 - - | 0/10 - - | 0/11 - - | 0/12 - - | 0/13 - - | 0/14 - - | 0/15 - - | 0/16 - - |
1 | 1/0 - - | 1/1 - - | 1/2 - - | 1/3 - - | 1/4 - - | 1/5 - - | 1/6 - - | 1/7 - - | 1/8 - - | 1/9 - - | 1/10 - - | 1/11 - - | 1/12 - - | 1/13 - - | 1/14 - - | 1/15 - - | 1/16 - - |
2 | 2/0 - - | 2/1 - - | 2/2 - - | 2/3 - - | 2/4 - - | 2/5 - - | 2/6 - - | 2/7 - - | 2/8 - - | 2/9 - - | 2/10 - - | 2/11 - - | 2/12 - - | 2/13 - - | 2/14 - - | 2/15 - - | 2/16 - - |
3 | 3/0 - - | 3/1 - - | 3/2 - - | 3/3 - - | 3/4 - - | 3/5 - - | 3/6 - - | 3/7 - - | 3/8 - - | 3/9 - - | 3/10 - - | 3/11 - - | 3/12 - - | 3/13 - - | 3/14 - - | 3/15 - - | 3/16 - - |
4 | 4/0 - - | 4/1 - - | 4/2 - - | 4/3 - - | 4/4 - - | 4/5 - - | 4/6 - - | 4/7 - - | 4/8 - - | 4/9 - - | 4/10 - - | 4/11 - - | 4/12 - - | 4/13 - - | 4/14 - - | 4/15 - - | 4/16 - - |
5 | 5/0 - - | 5/1 - - | 5/2 - - | 5/3 - - | 5/4 - - | 5/5 - - | 5/6 - - | 5/7 - - | 5/8 - - | 5/9 - - | 5/10 - - | 5/11 - - | 5/12 - - | 5/13 - - | 5/14 - - | 5/15 - - | 5/16 - - |
6 | 6/0 - - | 6/1 - - | 6/2 - - | 6/3 - - | 6/4 - - | 6/5 - - | 6/6 - - | 6/7 - - | 6/8 - - | 6/9 - - | 6/10 - - | 6/11 - - | 6/12 - - | 6/13 - - | 6/14 - - | 6/15 - - | 6/16 - - |
7 | 7/0 - - | 7/1 - - | 7/2 - - | 7/3 - - | 7/4 - - | 7/5 - - | 7/6 - - | 7/7 - - | 7/8 - - | 7/9 - - | 7/10 - - | 7/11 - - | 7/12 - - | 7/13 - - | 7/14 - - | 7/15 - - | 7/16 - - |
8 | 8/0 - - | 8/1 - - | 8/2 - - | 8/3 - - | 8/4 - - | 8/5 - - | 8/6 - - | 8/7 - - | 8/8 - - | 8/9 - - | 8/10 - - | 8/11 - - | 8/12 - - | 8/13 - - | 8/14 - - | 8/15 - - | 8/16 - - |
9 | 9/0 - - | 9/1 - - | 9/2 - - | 9/3 - - | 9/4 - - | 9/5 - - | 9/6 - - | 9/7 - - | 9/8 - - | 9/9 - - | 9/10 - - | 9/11 - - | 9/12 - - | 9/13 - - | 9/14 - - | 9/15 - - | 9/16 - - |
10 | 10/0 - - | 10/1 - - | 10/2 - - | 10/3 - - | 10/4 - - | 10/5 - - | 10/6 - - | 10/7 - - | 10/8 - - | 10/9 - - | 10/10 - - | 10/11 - - | 10/12 - - | 10/13 - - | 10/14 - - | 10/15 - - | 10/16 - - |
11 | 11/0 - - | 11/1 - - | 11/2 - - | 11/3 - - | 11/4 - - | 11/5 - - | 11/6 - - | 11/7 - - | 11/8 - - | 11/9 - - | 11/10 - - | 11/11 - - | 11/12 - - | 11/13 - - | 11/14 - - | 11/15 - - | 11/16 - - |
12 | 12/0 - - | 12/1 - - | 12/2 - - | 12/3 - - | 12/4 - - | 12/5 - - | 12/6 - - | 12/7 - - | 12/8 - - | 12/9 - - | 12/10 - - | 12/11 - - | 12/12 - - | 12/13 - - | 12/14 - - | 12/15 - - | 12/16 - - |
13 | 13/0 - - | 13/1 - - | 13/2 - - | 13/3 - - | 13/4 - - | 13/5 - - | 13/6 - - | 13/7 - - | 13/8 - - | 13/9 - - | 13/10 - - | 13/11 - - | 13/12 - - | 13/13 - - | 13/14 - - | 13/15 - - | 13/16 - - |
14 | 14/0 - - | 14/1 - - | 14/2 - - | 14/3 - - | 14/4 - - | 14/5 - - | 14/6 - - | 14/7 - - | 14/8 - - | 14/9 - - | 14/10 - - | 14/11 - - | 14/12 - - | 14/13 - - | 14/14 - - | 14/15 - - | 14/16 - - |
15 | 15/0 - - | 15/1 - - | 15/2 - - | 15/3 - - | 15/4 - - | 15/5 - - | 15/6 - - | 15/7 - - | 15/8 - - | 15/9 - - | 15/10 - - | 15/11 - - | 15/12 - - | 15/13 - - | 15/14 - - | 15/15 - - | 15/16 - - |
16 | 16/0 - - | 16/1 - - | 16/2 - - | 16/3 - - | 16/4 - - | 16/5 - - | 16/6 - - | 16/7 - - | 16/8 - - | 16/9 - - | 16/10 - - | 16/11 - - | 16/12 - - | 16/13 - - | 16/14 - - | 16/15 - - | 16/16 - - |
Right to Left Diagonals across a Row
Forward (Primes) (x,y)|(x+1,y-1)
RL Row 1: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | RL Row 2: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | RL Row 3: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | RL Row 4: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | RL Row 5: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | RL Row 6: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | RL Row 7: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | RL Row 8: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | RL Row 9: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | RL Row 10: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | RL Row 11: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | RL Row 12: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | RL Row 13: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | RL Row 14: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | RL Row 15: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | RL Row 16: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | RL Row 17: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | RL Row 18: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | RL Row 19: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 |
Order of frequencies: based on a 20Hz baseline or "C"
Backward (Primes) (x,y)|(x-1,y+1)
RL Row 1: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | RL Row 2: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | RL Row 3: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | RL Row 4: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | RL Row 5: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | RL Row 6: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | RL Row 7: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | RL Row 8: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | RL Row 9: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | RL Row 10: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | RL Row 11: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | RL Row 12: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | RL Row 13: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | RL Row 14: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | RL Row 15: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | RL Row 16: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | RL Row 17: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | RL Row 18: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | RL Row 19: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 |
Order of frequencies: based on a 20Hz baseline or "C"
Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0/0 - - | 0/1 - - | 0/2 - - | 0/3 - - | 0/4 - - | 0/5 - - | 0/6 - - | 0/7 - - | 0/8 - - | 0/9 - - | 0/10 - - | 0/11 - - | 0/12 - - | 0/13 - - | 0/14 - - | 0/15 - - | 0/16 - - |
1 | 1/0 - - | 1/1 - - | 1/2 - - | 1/3 - - | 1/4 - - | 1/5 - - | 1/6 - - | 1/7 - - | 1/8 - - | 1/9 - - | 1/10 - - | 1/11 - - | 1/12 - - | 1/13 - - | 1/14 - - | 1/15 - - | 1/16 - - |
2 | 2/0 - - | 2/1 - - | 2/2 - - | 2/3 - - | 2/4 - - | 2/5 - - | 2/6 - - | 2/7 - - | 2/8 - - | 2/9 - - | 2/10 - - | 2/11 - - | 2/12 - - | 2/13 - - | 2/14 - - | 2/15 - - | 2/16 - - |
3 | 3/0 - - | 3/1 - - | 3/2 - - | 3/3 - - | 3/4 - - | 3/5 - - | 3/6 - - | 3/7 - - | 3/8 - - | 3/9 - - | 3/10 - - | 3/11 - - | 3/12 - - | 3/13 - - | 3/14 - - | 3/15 - - | 3/16 - - |
4 | 4/0 - - | 4/1 - - | 4/2 - - | 4/3 - - | 4/4 - - | 4/5 - - | 4/6 - - | 4/7 - - | 4/8 - - | 4/9 - - | 4/10 - - | 4/11 - - | 4/12 - - | 4/13 - - | 4/14 - - | 4/15 - - | 4/16 - - |
5 | 5/0 - - | 5/1 - - | 5/2 - - | 5/3 - - | 5/4 - - | 5/5 - - | 5/6 - - | 5/7 - - | 5/8 - - | 5/9 - - | 5/10 - - | 5/11 - - | 5/12 - - | 5/13 - - | 5/14 - - | 5/15 - - | 5/16 - - |
6 | 6/0 - - | 6/1 - - | 6/2 - - | 6/3 - - | 6/4 - - | 6/5 - - | 6/6 - - | 6/7 - - | 6/8 - - | 6/9 - - | 6/10 - - | 6/11 - - | 6/12 - - | 6/13 - - | 6/14 - - | 6/15 - - | 6/16 - - |
7 | 7/0 - - | 7/1 - - | 7/2 - - | 7/3 - - | 7/4 - - | 7/5 - - | 7/6 - - | 7/7 - - | 7/8 - - | 7/9 - - | 7/10 - - | 7/11 - - | 7/12 - - | 7/13 - - | 7/14 - - | 7/15 - - | 7/16 - - |
8 | 8/0 - - | 8/1 - - | 8/2 - - | 8/3 - - | 8/4 - - | 8/5 - - | 8/6 - - | 8/7 - - | 8/8 - - | 8/9 - - | 8/10 - - | 8/11 - - | 8/12 - - | 8/13 - - | 8/14 - - | 8/15 - - | 8/16 - - |
9 | 9/0 - - | 9/1 - - | 9/2 - - | 9/3 - - | 9/4 - - | 9/5 - - | 9/6 - - | 9/7 - - | 9/8 - - | 9/9 - - | 9/10 - - | 9/11 - - | 9/12 - - | 9/13 - - | 9/14 - - | 9/15 - - | 9/16 - - |
10 | 10/0 - - | 10/1 - - | 10/2 - - | 10/3 - - | 10/4 - - | 10/5 - - | 10/6 - - | 10/7 - - | 10/8 - - | 10/9 - - | 10/10 - - | 10/11 - - | 10/12 - - | 10/13 - - | 10/14 - - | 10/15 - - | 10/16 - - |
11 | 11/0 - - | 11/1 - - | 11/2 - - | 11/3 - - | 11/4 - - | 11/5 - - | 11/6 - - | 11/7 - - | 11/8 - - | 11/9 - - | 11/10 - - | 11/11 - - | 11/12 - - | 11/13 - - | 11/14 - - | 11/15 - - | 11/16 - - |
12 | 12/0 - - | 12/1 - - | 12/2 - - | 12/3 - - | 12/4 - - | 12/5 - - | 12/6 - - | 12/7 - - | 12/8 - - | 12/9 - - | 12/10 - - | 12/11 - - | 12/12 - - | 12/13 - - | 12/14 - - | 12/15 - - | 12/16 - - |
13 | 13/0 - - | 13/1 - - | 13/2 - - | 13/3 - - | 13/4 - - | 13/5 - - | 13/6 - - | 13/7 - - | 13/8 - - | 13/9 - - | 13/10 - - | 13/11 - - | 13/12 - - | 13/13 - - | 13/14 - - | 13/15 - - | 13/16 - - |
14 | 14/0 - - | 14/1 - - | 14/2 - - | 14/3 - - | 14/4 - - | 14/5 - - | 14/6 - - | 14/7 - - | 14/8 - - | 14/9 - - | 14/10 - - | 14/11 - - | 14/12 - - | 14/13 - - | 14/14 - - | 14/15 - - | 14/16 - - |
15 | 15/0 - - | 15/1 - - | 15/2 - - | 15/3 - - | 15/4 - - | 15/5 - - | 15/6 - - | 15/7 - - | 15/8 - - | 15/9 - - | 15/10 - - | 15/11 - - | 15/12 - - | 15/13 - - | 15/14 - - | 15/15 - - | 15/16 - - |
16 | 16/0 - - | 16/1 - - | 16/2 - - | 16/3 - - | 16/4 - - | 16/5 - - | 16/6 - - | 16/7 - - | 16/8 - - | 16/9 - - | 16/10 - - | 16/11 - - | 16/12 - - | 16/13 - - | 16/14 - - | 16/15 - - | 16/16 - - |
Left to Right Diagonals across a Row
Forward (Odd/Even) (x,y)|(x+1,y+1)
LR Row 1: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | LR Row 2: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | LR Row 3: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | LR Row 4: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | LR Row 5: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | LR Row 6: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | LR Row 7: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | LR Row 8: | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | LR Row 9: | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | LR Row 10: | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | LR Row 11: | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | LR Row 12: | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | LR Row 13: | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | LR Row 14: | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | LR Row 15: | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | LR Row 16: | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | LR Row 17: | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | LR Row 18: | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | LR Row 19: | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | LR Row 20: | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 |
Order of frequencies: based on a 20Hz baseline or "C"
Backward (x,y)|(x-1,y-1)
LR Row 1: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | LR Row 2: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | LR Row 3: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | LR Row 4: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | LR Row 5: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | LR Row 6: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | LR Row 7: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | LR Row 8: | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | LR Row 9: | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | LR Row 10: | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | LR Row 11: | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | LR Row 12: | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | LR Row 13: | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | LR Row 14: | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | LR Row 15: | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | LR Row 16: | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | LR Row 17: | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | LR Row 18: | 9 | 10 | 10 | 9 | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | LR Row 19: | 11 | 8 | 12 | 7 | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | LR Row 20: | 0 | 6 | 1 | 5 | 2 | 4 | 3 | 3 | 4 | 2 | 5 | 1 | 6 | 0 | 7 | 12 | 8 | 11 | 9 | 10 | 10 | 9 | 11 | 8 | 12 |
Order of frequencies: based on a 20Hz baseline or "C"
Lambdoma Keyboard (Barbara Hero) colored in with the locally determined frequency , and the letter note values based on a 256Hz C.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0/0 - - | 0/1 - - | 0/2 - - | 0/3 - - | 0/4 - - | 0/5 - - | 0/6 - - | 0/7 - - | 0/8 - - | 0/9 - - | 0/10 - - | 0/11 - - | 0/12 - - | 0/13 - - | 0/14 - - | 0/15 - - | 0/16 - - |
1 | 1/0 - - | 1/1 - - | 1/2 - - | 1/3 - - | 1/4 - - | 1/5 - - | 1/6 - - | 1/7 - - | 1/8 - - | 1/9 - - | 1/10 - - | 1/11 - - | 1/12 - - | 1/13 - - | 1/14 - - | 1/15 - - | 1/16 - - |
2 | 2/0 - - | 2/1 - - | 2/2 - - | 2/3 - - | 2/4 - - | 2/5 - - | 2/6 - - | 2/7 - - | 2/8 - - | 2/9 - - | 2/10 - - | 2/11 - - | 2/12 - - | 2/13 - - | 2/14 - - | 2/15 - - | 2/16 - - |
3 | 3/0 - - | 3/1 - - | 3/2 - - | 3/3 - - | 3/4 - - | 3/5 - - | 3/6 - - | 3/7 - - | 3/8 - - | 3/9 - - | 3/10 - - | 3/11 - - | 3/12 - - | 3/13 - - | 3/14 - - | 3/15 - - | 3/16 - - |
4 | 4/0 - - | 4/1 - - | 4/2 - - | 4/3 - - | 4/4 - - | 4/5 - - | 4/6 - - | 4/7 - - | 4/8 - - | 4/9 - - | 4/10 - - | 4/11 - - | 4/12 - - | 4/13 - - | 4/14 - - | 4/15 - - | 4/16 - - |
5 | 5/0 - - | 5/1 - - | 5/2 - - | 5/3 - - | 5/4 - - | 5/5 - - | 5/6 - - | 5/7 - - | 5/8 - - | 5/9 - - | 5/10 - - | 5/11 - - | 5/12 - - | 5/13 - - | 5/14 - - | 5/15 - - | 5/16 - - |
6 | 6/0 - - | 6/1 - - | 6/2 - - | 6/3 - - | 6/4 - - | 6/5 - - | 6/6 - - | 6/7 - - | 6/8 - - | 6/9 - - | 6/10 - - | 6/11 - - | 6/12 - - | 6/13 - - | 6/14 - - | 6/15 - - | 6/16 - - |
7 | 7/0 - - | 7/1 - - | 7/2 - - | 7/3 - - | 7/4 - - | 7/5 - - | 7/6 - - | 7/7 - - | 7/8 - - | 7/9 - - | 7/10 - - | 7/11 - - | 7/12 - - | 7/13 - - | 7/14 - - | 7/15 - - | 7/16 - - |
8 | 8/0 - - | 8/1 - - | 8/2 - - | 8/3 - - | 8/4 - - | 8/5 - - | 8/6 - - | 8/7 - - | 8/8 - - | 8/9 - - | 8/10 - - | 8/11 - - | 8/12 - - | 8/13 - - | 8/14 - - | 8/15 - - | 8/16 - - |
9 | 9/0 - - | 9/1 - - | 9/2 - - | 9/3 - - | 9/4 - - | 9/5 - - | 9/6 - - | 9/7 - - | 9/8 - - | 9/9 - - | 9/10 - - | 9/11 - - | 9/12 - - | 9/13 - - | 9/14 - - | 9/15 - - | 9/16 - - |
10 | 10/0 - - | 10/1 - - | 10/2 - - | 10/3 - - | 10/4 - - | 10/5 - - | 10/6 - - | 10/7 - - | 10/8 - - | 10/9 - - | 10/10 - - | 10/11 - - | 10/12 - - | 10/13 - - | 10/14 - - | 10/15 - - | 10/16 - - |
11 | 11/0 - - | 11/1 - - | 11/2 - - | 11/3 - - | 11/4 - - | 11/5 - - | 11/6 - - | 11/7 - - | 11/8 - - | 11/9 - - | 11/10 - - | 11/11 - - | 11/12 - - | 11/13 - - | 11/14 - - | 11/15 - - | 11/16 - - |
12 | 12/0 - - | 12/1 - - | 12/2 - - | 12/3 - - | 12/4 - - | 12/5 - - | 12/6 - - | 12/7 - - | 12/8 - - | 12/9 - - | 12/10 - - | 12/11 - - | 12/12 - - | 12/13 - - | 12/14 - - | 12/15 - - | 12/16 - - |
13 | 13/0 - - | 13/1 - - | 13/2 - - | 13/3 - - | 13/4 - - | 13/5 - - | 13/6 - - | 13/7 - - | 13/8 - - | 13/9 - - | 13/10 - - | 13/11 - - | 13/12 - - | 13/13 - - | 13/14 - - | 13/15 - - | 13/16 - - |
14 | 14/0 - - | 14/1 - - | 14/2 - - | 14/3 - - | 14/4 - - | 14/5 - - | 14/6 - - | 14/7 - - | 14/8 - - | 14/9 - - | 14/10 - - | 14/11 - - | 14/12 - - | 14/13 - - | 14/14 - - | 14/15 - - | 14/16 - - |
15 | 15/0 - - | 15/1 - - | 15/2 - - | 15/3 - - | 15/4 - - | 15/5 - - | 15/6 - - | 15/7 - - | 15/8 - - | 15/9 - - | 15/10 - - | 15/11 - - | 15/12 - - | 15/13 - - | 15/14 - - | 15/15 - - | 15/16 - - |
16 | 16/0 - - | 16/1 - - | 16/2 - - | 16/3 - - | 16/4 - - | 16/5 - - | 16/6 - - | 16/7 - - | 16/8 - - | 16/9 - - | 16/10 - - | 16/11 - - | 16/12 - - | 16/13 - - | 16/14 - - | 16/15 - - | 16/16 - - |
Solving for the 3D: extrapolating the matrix into 3 dimensions creating a fabric that is infinitely scalable in 6 directions: a sample using waveform pairs form the 13/20 matrix:
Jellomatrix by Ana Willem is licensed since 2007 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at https://www.jellobrain.com.